777-service.ru

Антифеодальный портал 777-service.ru

Закон Рэлея — Джинса

Закон Рэлея-Джинса — закон излучения Рэлея-Джинса для равновесной плотности излучения абсолютно чёрного тела и для испускательной способности абсолютно чёрного тела который получили Рэлей и Джинс, в рамках классической статистики (теорема о равнораспределении энергии по степеням свободы и представление об электромагнитном поле как о бесконечномерной динамической системе).[1][2][3]

Правильно описывал низкочастотную часть спектра, при средних частотах приводил к резкому расхождению с экспериментом, а при высоких — к абсурдному результату (см. ниже), означавшему неудовлетворительность классической физики.

Вывод формулы

Зависимость испускательной способности абсолютно черного тела от длины волны для разных температур (выделены цветом) и её вид, исходя из классических рассуждений Релея и Джинса (черный цвет)

Основываясь на законе о равнораспределении энергии по степеням свободы: на каждое электромагнитное колебание приходится в среднем энергия, складываемая из двух частей kT. Одну половинку вносит электрическая составляющая волны, а вторую  — магнитная. Само по себе, равновесное излучение в полости, можно представить как систему стоячих волн. Количество стоячих волн в трехмерном пространстве дается выражением:


        \mathrm{d}n_{\omega}= \frac{\omega^2 \mathrm{d} \omega}{2 \pi^2 v^3}  \qquad\qquad (1)
.

В нашем случае скорость следует положить равной , более того, в одном направлении могут двигаться две электромагнитные волны с одной частотой, но со взаимно перпендикулярными поляризациями, тогда (1) в добавок следует помножить на два:


        \mathrm{d}n_{\omega}= \frac{\omega^2 \mathrm{d} \omega}{\pi^2 c^3}  \qquad\qquad (2)
.

Релей и Джинс каждому колебанию приписали энергию . Помножив (2) на ,получим плотность энергии, которая приходится на интервал частот :


        u(\omega,T) \mathrm{d} \omega = \overline {\varepsilon} \mathrm{d}n_{\omega}=
        kT \frac{\omega^2 }{\pi^2 c^3} \mathrm{d} \omega
,

тогда:


        u(\omega,T) = kT \frac{\omega^2 }{\pi^2 c^3} \qquad\qquad (3)
.

Зная связь испускательной способности абсолютно черного тела с равновесной плотностью энергии теплового излучения , для находим:


        f(\omega,T) = kT \frac{\omega^2 }{4 \pi^2 c^2} \qquad\qquad (4)

Выражения (3) и (4), называют формулой Релея-Джинса.

Ультрафиолетовая катастрофа

Формулы (3) и (4) удовлетворительно согласуются с экспериментальными данными лишь для больших длин волн, на более коротких волнах согласие с экспериментом резко расходится. Более того, интегрирование (3) по в пределах от 0 до для равновесной плотности энергии дает бесконечно большое значение. Этот результат, получивший название ультрафиолетовой катастрофы, очевидно, входит в противоречие с экспериментом: равновесие между излучением и излучающим телом должно устанавливаться при конечных значениях . Однако ошибки в выводе формулы Релея-Джинса с классической точки зрения  —— нет[источник не указан 302 дня]. Очевидно несогласие с экспериментом вызвано некими закономерностями, которые несовместимы с классической физикой. Эти закономерности были определены Максом Планком: в 1900 году ему удалось найти вид функции , соответствующий опытным данным, в дальнейшем называемую формулой Планка.

Примечания

  1. Remarks upon the law of complete radiation». Phil. Mag. 49: 539-540.
  2. On the laws of radiation» (pdf). Proc. R. Soc. Lond. A 76: 545-552. 10.1098/rspa.1905.0060.
  3. Джон Уильям Стрэтт (Лорд Рэлей)» (pdf). УФН 88 (1): 149-160.


Закон Рэлея — Джинса.